ctplanet.InertiaTensor_from_shape

ctplanet.InertiaTensor_from_shape#

ctplanet.InertiaTensor_from_shape(hilm, rho, n, normalize=False, quiet=True)#

Calculate the inertia tensor given a radial density profile and shape of each interface.

Returns:

  • I (ndarray, size(3, 3)) – The inertia tensor.

  • A, B, C (float) – The principal moments of inertia, with A<B<C.

  • M (float) – Mass of material beneath interface n.

  • R (float) – The radius of the uppermost interface.

  • angles (ndarray, size(3,2)) – Matrix with each row containing the latitude and longitude coordinates (in degrees) of the principal moments A, B and C.

Parameters:
  • hilm (array of SHCoeffs class instances, size(n+1)) – Array of SHCoeffs class instances of the spherical harmonic coefficients of the relief at each interface. hilm[0] corresponds to r=0 and hilm[n] to the uppermost interface.

  • rho (ndarray, size(n)) – Array of the densities of each layer, where index i corresponds to the density between interfaces i and i+1.

  • n (int) – index corresponding to the uppermost layer.

  • normalize (bool, optional, default = False) – If True, return all moments normalized by MR^2

  • quiet (bool, optional, default = True) – If False, print additional information, including the directions of the axes of the principal moments and gravitational coefficients.